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The wave forces exerted on a floating 3-dimensional body can be found by expressing 
the velocity potential of the surrounding fluid as the field of a distribution of point 
wave sources over the wetted part of the body surface. The problem then reduces 
to one of finding the solution to a 2-dimensional Fredholm integral equation of the 
second kind, to give the (unknown) surface source density. A simplification is possible 
for bodies that have a vertical axis of symmetry: for this type of body we can 
distribute ‘rings of sources’ over the body surface, and the problem then reduces to  
the solution of l-dimensional Fredholm equations of the second kind. This approach 
has been adopted before, but earlier work has made use of expressions for the 
fundamental ring-source potentials which are not always suitable for numerical 
computation. It is possible to derive many alternative expressions for the ring-source 
potentials, but it appears that  no single expression is computationally convenient in 
every situation ; the present paper discusses the computational merits of three 
different types of expression, the aim being to  provide a comprehensive scheme for 
the evaluation of the ring-source potentials. The ring-source/integral-equation 
method will be used to calculate the wave forces exerted on certain specific bodies 
of revolution and results are presented here. A brief discussion of the problem of 
‘irregular values’ is also given: these only occur when the body intersects the free 
surface. 

1. Introduction 
The subject of the radiation or diffraction of water waves by natural boundaries 

or man-made structures is of considerable importance in ocean engineering. This has 
been especially true of the last 20 years where the discovery of sizeable oil deposits 
under the North Sea has prompted detailed research into the safe and economic design 
of offshore terminals and drilling platforms. Even more topical than this is the current 
debate over the practicability of placing wave-energy extraction devices off the shores 
of the United Kingdom. Accurate predictions of the forces exerted on these devices 
are needed in order to ascertain the relative efficiencies of the many devices that have 
been proposed. (See Evans (1981) for a recent review of this subject.) 

In  many problems involving a large body situated in the ocean, a realistic 
mathematical model can be achieved by assuming that the fluid is inviscid, 
incompressible and irrotational, and that surface-tension effects can be ignored. This 
leads to the classical description of the flow in terms of a velocity potential which 
satisfies Laplace’s equation in the bulk of the fluid. I n  the context of a linearized 
theory, the boundary condition a t  the free surface reduces to a Robin-type condition 
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involving a linear combination of the potential and its normal derivative. Even after 
making all of these simplifying assumptions we still need to solve a non-trivial 
boundary-value problem. 

For general 3-dimensional bodies a solution can be formulated in terms of integral 
equations. The usual procedure is to use a ‘singular solution’, such as a Green 
function, which satisfies all the conditions of the problem except that  on the body 
itself. When the potential is expressed in terms of a distribution of these ‘sources’ 
over the body surface, the problem reduces to one of finding the solution of a 
2-dimensional integral equation of the second kind, which gives the requisite source 
density over the body surface. A detailed investigation of the properties of this 
integral equation has been given by John (1950), who also established the existence 
and uniqueness of a solution to the physical problem, subject to the satisfaction by 
the body of certain geometrical conditions. 

Only in a few exceptional cases can this integral equation be solved explicitly. 
However, with the advent of modern electronic computers with their large storage 
capacities i t  is feasible to discretize the body surface into a number of flat ‘panels’ 
and so replace the integral equation by a related system of linear algebraic equations 
whose solution gives approximations to the average source density over each panel. 
Details of the application of this procedure have been given by Kim (1965) ; Milgram 
& Halkyard (1971) ; Garrison & Chow (1972) ; Hogben & Standing (1974)’ and others. 

This paper describes an  integral equation method which is more appropriate for 
floating bodies which have a vertical axis of symmetry. For this type of body the 
problem will be shown to reduce to  the solution of l-dimensional integral equations 
of the second kind, in which the kernels relate to  the potentials of horizontal rings 
of sources which are distributed over the wetted part of the body surface. It seems 
reasonable to expect that  solutions can be more accurately obtained from these 
l-dimensional equations than from the ‘full ’ 2-dimensional equation, since one of 
the integrations is being performed analytically rather than numerically. Although 
this is essentially the same approach as that used earlier by Black (1975) and Fenton 
(1978), the present work differs from that of the previous authors in that more 
attention is given to finding accurate and efficient means of computing the terms 
appearing in the kernels of the integral equations. 

The ring-source/integral-equation method will only be of practical value if we can 
find analytic expressions for the ring-source potential which easily lend themselves 
to numerical computation. Fenton has given an expression for this potential in the 
form of an infinite series of cylindrical harmonics, see (3.9) below, but this is found 
to converge only very slowly in the neighbourhood of a vertical cylinder that has the 
ring on its surface. Thus, for a distribution of rings over the body, one obtains regions 
of slow convergence throughout the vertical cylinder containing the body - this is 
often the region of greatest interest in the calculations. Fenton was able to improve 
the convergence of his infinite series by a process of ‘series transformation’ and 
‘removal of singularities ’, but this considerably increases the algebraic complexity 
of his final expression for the ring-source potential. 

It is possible to derive many alternative expressions for the ring-source potential, 
but i t  appears that  no single expression is computationally convenient in every 
situation; the aim of the present paper is to  give the most useful of these expressions, 
so as to provide a comprehensive scheme for the evaluation of the ring-source 
potential. For example, $ 3  gives an expression for the potential due to a ‘cos m0’ 
distribution of sources around a horizontal ring as an infinite series of multivalued 
toroidal harmonics, and this is computationally useful in the neighbourhood of the 
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ring, particularly if the ring lies on, or near, the free surface. This generalizes the result 
given in a previous paper (Hulme 1981a) which considered the case of a uniform 
distribution of sources, i.e. m = 0. 

It is well known that the representation of the potential as a surface source 
distribution will fail at a discrete set of ‘irregular’ values of the wavenumber K ,  for 
which the corresponding interior Dirichlet problem has non-trivial solutions. For an 
arbitrary 3-dimensional body these values of K are not known in advance, but i t  is 
shown in $5 that, for bodies that possess a vertical axis of symmetry, the irregular 
values of K lie near to the zeros of the Bessel functions J,, m = 0 ,  1 , . . . . 

From a practical viewpoint there are two physically distinct cases of interest : the 
‘radiation’ problem in which waves are produced in the fluid as a result of a forced 
motion of the body, and the ‘diffraction’ problem in which waves are incident upon 
a fixed body and are modified by it. The mathematical formulations of these problems 
are almost identical and so only that for the radiation problem will be given in detail. 

The ring-sourcelintegral-equation method has been used to compute the wave 
forces exerted on certain specific bodies of revolution, and some of the results are 
presented in $6. 

An alternative method of finding numerical solutions to water wave problems of 
this type is to use a ‘finite-elements’ approach, but this will not be discussed here. 
For a review of this and other methods see Mei (1978). 

2. The mathematical formulation of the problem: rings of sources 
We will now formulate the radiation problem for a floating body of revolution which 

has a vertical axis of symmetry. The surrounding fluid is assumed to be inviscid, 
imcompressible and irrotational, and surface-tension effects will be ignored. These 
assumptions suggest a description of the flow in terms of a velocity potential @(r, t ) ,  
which must be defined in the region Vexterior to  the wetted part of the body surface 
S. Waves are generated in the fluid due to  an oscillatory motion of the body, whose 
instantaneous velocity will be taken as V cos wt, where V is some constant vector. 
The fluid is assumed to have attained a ‘steady state’ in which its variation with 
time is also harmonic, and we can write 

@(r, t )  = Re {d(r) eciwt), 

where $ is a complex-valued potential, to be determined. The equation of continuity 
in the bulk of the fluid is 

Vz$ = 0 in (2.1) 

where V2 is the 3-dimensional Laplacian operator. We assume that the fluid motion 
is small enough to  allow the use of the linearized free-surface condition 

(2.2) 
a$ 
aY 

K$+ - = 0 on y = 0 outside 5, 

where K = w 2 / g .  The fluid has a uniform depth d and the potential satisfies the fixed, 
non-porous wall condition 

- = 0  on y = d .  

It seems reasonable to expect that  far from the body the potential $ resembles that 
of a radially outgoing wave and so we impose a ‘radiation condition’ of the form 

(2.3) 
ad 
aY 

as 
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y = o  
X 

FIGURE 1. Definition sketch. 

where r2 = x 2 + z 2  

and k, i s  the unique, real, positive root of the transcendental equation 

K =  k,tanhk,d. 

The normal fluid velocity on Sis prescribed by the instantaneous velocity V cos ot 
of the body. For simplicity we shall choose the directions of the x- and z-axes so that 
V can be written as V = (voj+wli) ,  

where wo, v1 are constants and {i, j, k} is the usual orthonormal set of basis vectors. 
The boundary condition on the body is thus 

* = ~ . f i  o n s .  
an 

The equations (2.1)-(2.5) define a boundary-value problem for the unknown 
potential #(r). This can be solved by the introduction of a Green function G(r;r’) 
which satisfies all the conditions of the problem except that on the body itself, and 
has the property that 

V2G = - 4nS(r - r’), 

where S is the Dirac delta-function. Thus G(r;r’) corresponds to the potential at  r 
due to a R-l type source at r’. John (1950) has given an expression for this Green 
function in terms of cylindrical polar coordinates ( r ,  8,  y) and this will be used in $ 3  ; 
for the purpose of this section we need only note that G(r ; r’) can be expanded in the 
form 

where z 

X 
8 = tanp1 - 

and E, is Neumann’s coefficient ( = 1 when m = 0 ,2  when m >, 1 ) .  

# as a distribution of sources over the mean wetted surface S, viz 
When solving water-wave problems of this type it is usual to express the potential 

#(r) = jj j’(r’)G(r;r’)d8. (2.7) 
§ 
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(We adopt the convention that ‘primed’ variables refer to  the surface S.) By 
construction, this satisfies all the conditions of the problem except that  on the body; 
to satisfy this last condition we must choose the (as yet unknown) source densityf(r‘) 
so that 

-2nf(r)+ f(r’)-G(r;r’)dS = V . A  ( r E  9 (2.8) 
a J L  an 

and this is valid for any surface S. 
It is known (see e.g. John 1950) that the integral equation (2.8) always has a unique 

solution, except a t  a discrete set of ‘irregular’ values of K at which the corresponding 
interior Dirichlet problem has non-trivial solutions. At these irregular values the 
potential cannot be expressed in terms of a surface distribution of sources alone - 
dipoles are required as well. Further consideration of these irregular values, with 
regard to bodies of revolution, is given in $ 5  of this paper. 

We now exploit the fact that  the body has a vertial axis of symmetry to  rewrite 
the surface element dS as dS = r‘ de’ ds’, where s‘ is a measure of arc-length over a 
cross-section of the surface S. Also, we can express the source density f(r‘) as a 

f(r’) = 1 fm(s’ )  cosm0’. 
Fourier cosine series W 

m-o 

Substituting these forms into (2.7), we deduce that 
m rs* 

where 
Wm(r;r‘, y’) = r‘ cosrnO’G(r;r’)dB’ r 

and s* is the arclength X Y  in figure 1. 
We recognize 9,(r; r’, y’) to be the potential a t  r due to a cos me distribution of 

sources around the ring y = y’, r = r ’ ;  henceforth we will refer to  9, as the mth-order 
ring-source potential. 

Using the expression for G given by (2.6), we deduce that W, is of the form 

gm(r;r’,y’) = R,(r, y;r‘, y‘)cosmO, 

R m ( r >  y;  r’, Y‘) = 2nr’gm(r, y;  r’, y’). 

(2.9) 

(2.10) with 

Finally, we deduce that $(r) can be expanded as 

where 

and the (as yet unknown) source-density terms fm(s’) satisfy the equations 

2)o cos 6 (m = O ) ,  (2.13 a)  

y;r’, y’)ds’ = (2.136) 

(m 2 2) (2.13 c) 

(m = I ) ,  

(cost = fi.j). 
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Thus for a body of revolution the problem can be reduced to the solution of a system 
of 1-dimensional integral equations of the second kind. I n  fact, for m 2 2 it  is clear 
that we can take 

i.e. 

f m ( s )  E 0, 

# m ( r , y )  E 0 for m 3 2, 

and so for the radiation problem we only need solve the integral equations for 
m = 0 , 1 .  

A similar situation arises in the corresponding diffraction problem, which can also 
be reduced to a system of equations like (2.13), but with different ‘right-hand sides’. 
For the diffraction problem we write the velocity potential #d(r) as the sum of two 
terms 

where @ is the (known) potential of the incident wave and q5s is the potential of the 
scattered wave, which is to be determined. To uniquely define the solution to this 
problem we must impose the radiation condition that,  far from the body, #s 

represents a radially outgoing wave. As before, we write @, #s as Fourier series 

= @(r) +#s(r)’ 

m 

#(r) = X qjm(r, y) cos me, 

@(r) = X @m(r, y) cosme, 

m - o  

m 

m - o  

where the Pm can be expressed in terms of ring-source distributions 

S* 

@m(r, y) = S, j m ( s ’ )  Em(r, y;  r’, y’) ds’. 

The unknown source-density terms fm(s’) are determined by applying the boundary 
condition on the fixed body, viz 

a#d -= 0 on S, 
an 

on S. 
i.e. ay a# -=-- 

an an 

This leads to the integral equations 

on S (m = 0, 1 ,  ...). 

The solution of the integral equations for m = 0 , l  is sufficient for the calculation of 
all the net forces and moments acting on the body. 

We will see presently that the kernels of these 1-dimensional integral equations are 
rather complicated and we would not expect to find a solution in ‘closed form’, so 
it is necessary to adopt some approximate numerical method of solution. A suitable 
numerical scheme is outlined in $4. Once numerical approximations tofo andf, have 
been found it is then a comparatively easy matter to calculate #o and dl, and hence 
determine the forces and moments exerted on the body. 

However, before we can employ such a numerical method of solution we need to 
have reliable means of computing the values of the kernels of the integral equations 
(2.13), and this is discussed in $3. 
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3. The computation of the ring-source potential R, 
Before we discuss the computation of Rm(r, y ; r ‘ ,  y’) for any values of the parameters 

r ,  y, r ’ ,  y’ it is important to remember that the ring-source potential is singular on the 
ring itself. It can be rigorously established that 

Rm(r,y;r‘, y’) - -ln[(r-r’)2+(y-y’)2]+0(1) as (r-r’)2+(y-y’)2+0 

(see Hulme 1981 b ) ,  although the form of this result is suggested a priori, by analogy 
with the potential due to an infinite line of sources. The presence of this singularity 
often means that expressions for R,(r, y ;  r ’ ,  y‘) are only valid in a restricted range 
(y > y‘ or r > r ’ ,  etc.), as we shall see later. 

Three different types of expression for R, will now be presented, and it is expedient 
to discuss the computational merits of each one separately. It is often useful to have 
the form of a result in the limiting case of infinite depth (i.e. d + co) and so we will 
use the revised notation 

Rm(r,y; r’>y’Id), ~ m ( r > y ; r ’ ~ y ’ l ~ )  etc. 

wherever this is appropriate. 

3.1. Integral representations 
John (1950) has given an integral representation of the Green function G(r;r’), viz 

where 

(3.1) 

( 3 . 2 ~ )  

(3.2b) 

q = {r2+r’2-2rr’cos(e-B’)>a, 

y, = max{y,y’l, Y <  = min{y,y’). 

The path of integration in (3.1) is indented to run under the simple pole of the 
integrand at p = k,, so that G satisfies the radiation condition a t  infinity. (For infinite 
depth, k, = K.) 

Neumann’s addition formula for the Bessel function Jo(pq) gives 
m 

(see Watson 1944, p. 358), and, substituting this in (3.1) and using (2.6), (2.10), we 
deduce that 

Rm(r>y;r‘>yf) = 2 n r ’ ~ p ( p ) J m ( / c r ) J m ( / L T I ) d p .  0 (3.3) 

For large values of p the above integrand is asymptotic to 

e-filv-Y’I Jm(pr)  J,(pr’), (3.4) 

and this suggests that we should rewrite (3.3) in the form 

Rm(r, y;r’, y‘) = 27rr’ edy-y’ l  F ( p )  dp, 
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where ( 3 . 5 )  

The convergence of this integral is clearly governed by the exponential term e-plv-Y’I 

in the integrand, and so we would expect that the representation (3 .4 )  is numerically 
convenient whenever )y-y’I is not small compared with r and r‘. 

To approximate the value of R, successfully we must also take account of the fact 
that p ( p )  has a simple pole a t  ,u = k,. The residue at the pole can easily be shown 

= res (k,), for brevity. 

For the purpose of computation, the expression ( 3 . 3 )  should be evaluated as 
C 

Rm(r, y; r ‘ ,  y’) = 2 n r ‘ s  { p ( p )  - *} Jm(pr)  J,(pr‘) d p  
0 P-k, 

+ 2 ~ r ’ r e ~ ( k , ) J ~ ( k , r ) J ~ ( k ~ r ’ ) ~ ~ ~  o p -  0 

( 3 . 7 ~ )  

(3 .7b )  

where k, < C < co. The integrand of ( 3 . 7 ~ )  is bounded over [0,  C] and the integral 
can be evaluated using any of the standard quadrature rules, care being taken to treat 
the ‘removable’ singularity a t  p = k,. The integral in (3 .7b )  has the explicit value 

The remaining integral (3.7 c )  is best evaluated by using a Gauss-Laguerre quadrature 
scheme, which is specially designed for integrals of this form. (Stroud & Secrest (1966) 
give a comprehensive description of this and all the other standard Gaussian 
quadrature rules.) 

Finally, we remark that this integral representation is not particularly suitable for 
evaluating Rm(r , y ; r ’ ,  y‘) in the neighbourhood of the source ring itself, since here 
Iy-y’I is necessarily small and the convergence of the infinite-range integral ( 3 . 7 ~ )  
will be slow. 

3.2.  Series of cylindrical harmonics 

The poles of the function p ( p )  occur as the roots of the equation 

psinhpd = Kcoshpd. 

This has two real roots p = k k, and an infinite set of pure-imaginary roots p = f ic,,  
n = 1 , 2 , 3 ,  ..., where the {c,}  satisfy 

c,tanc,d = -K. 

John (1950)  has given an expansion for p ( p )  of the form 
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where 4(ki- K 2 )  
A -  cash ko(d -y )  cash k,(d-y’), ’ - d ( k i - K 2 ) + K  

Substituting this expansion into (3.3) and using the known results 

where r >  = max{r,r‘}, r< = min{r,r‘} (see Watson 1944, p. 429), we deduce tha t  

A ,  Im(cnr<)Km(c ,  r , ) .  
00 

R,(r,y; r’,y’ld) = A o n 2 r ’ i J , ( k , r , ) H ~ ) ( k o r , ) + 2 n r ’  
n = 1  

(3.9) 

This representation for R, is the one used by Black (1975), and later by Fenton 
(1978). 

To investigate the convergence of the infinite series (3.9) we first need to know the 
behaviour of the {c,}  for large n, and this follows from (3.8); it  is easy to deduce that 

c ,d-nn+O(k)  as n + m .  

Using this and the known asymptotics of the Bessel functions I,, K ,  (see Watson 
1944, pp. 202, 203) we see that 

and i t  follows that the series representation (3.9) will be rapidly convergent whenever 
Ir-r’l is not small compared with the depth d ,  and so is computationally useful in 
this range. 

The series representation becomes less useful for larger values of d. In  fact, in the 
formal limit d -+ co the {c , )  become infinitely dense on [0,m) and the series transforms 
to an integral representation, viz 

Rm(r9 y ; r’ y’lm) 
= 4Kn2r‘i e-K(y+y’)  J,(Kr <)H$)(Kr  >)  

(3.10) 

The infinite-depth result (3.10) can be accurately evaluated, using an adapted 
Gauss-Laguerre quadrature rule, whenever )r -r’) is not small compared with either 
y or y’. 

Again, we note that neither (3.9) nor (3.10) is useful for evaluating R, in the 
neighbourhood of the ring, as Ir-r’I will be small in this region. 

dv 
v 2 + K 2 ’  

+ 8r’ (v cos vy - Ksin vy) (v cos vy’ - K sin vy’) I,( v r ,  ) K,(vr , )  ~ 

3.3. Expressions using toroidal harmonics 

We now consider expressions for R, which are computationally useful near the ring 
itself. First, we define ‘local’ toroidal coordinates (v ,  @, 0) about the ring r = r’, 
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y = y’ ; suppose P(r, y, 8)  is a point in the fluid and A, B are opposite ends ofa diameter 
of the ring, such that  the plane A P B  contains the y-axis, and B is closest to P. Then 

( 3 . 1 1 ~ )  

4rJ2 - A P  - B P  ), $ 3 0  for y s  y’, (3.11b) ( 2 A P . B P  
II. = APB = C O S - ~  

8 as for polar coordinates. 
Inversely, we have 

( 3 . 1 1 ~ )  

(3.12) 

The surfaces a = const., @ = const., 8 = const. are mutually orthogonal, and 
Laplace’s equation is known to have quasi-separated solutions in this coordinate 
system (see Morse & Feshbach 1953). 

Now, suppose (a,  @, 8) are as defined above and that (u*, $*, 8) is another set of 
toroidal coordinates defined, in a similar way, relative to  the ‘image ring’ a t  r = r ‘ ,  
y = - y’. Then i t  can be shown that (see Hulme 1981 b )  

m !  
(2m) ! 

Bm(r, y;r’, y’) = ( -  l)mmr1/2 4m-(cosha-cos@)4Pi(cosha) ( 3 . 1 3 ~ )  

m !  

(2m) ! 
+ (-  l)m n1/2 4m-- (cash a*-cos @ * ) ~ P ~ ( c o s h  a*) (3.13b) 

~ ( p )  = e-gd [2p coshpy coshpy‘ + K{coshp(y -9’) - sinhp(y + y’)}] + Kd(@-”-Y’), 

and PI is an associated Legendre function of the first kind. The terms (3.13a, b )  
correspind to the potentials due to rings of sources in an unbounded fluid, a t  r = r’, 
y = y’ (i.e. u = co) and r = r ’ ,  y = -y’ (i.e. a* = 00) respectively. These terms 
involving toroidal harmonics can be successfully evaluated for any values of the 
parameters u, II., cr*, $* by using the known relations between Legendre functions and 
complete elliptic integrals (see Appendix A for details). 

The integral for Em, given by (3.14), can be evaluated by quadrature methods 
similar to those outlined in $3.1,  and this is practicable in all cases except when y + y‘ 
is small compared with r or r‘. Thus difficulties arise when evaluating Em in the 
neighbourhood of a ring that lies on, or near, the free surface. In  this region a* is 
large, and a more useful representation of Em, for infinite depths, is the following 
expansion in terms of multivalued toroidal harmonics, as given by Hulme (1981 a) : 

m m + X unA(a*,$*;u,m)+ Z v,B(a*,@*;v,m), (3.15) 
n - 0  n - 1  

where A(a*,  $*; v, m )  = (cosh u* -cos $*)h cos v@*QZ”_i(cosh a*), 

B(a*, $*; u, m) = (cosh a* - cosh $*$ sin u$*QF-n_?(cosh a*), 
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and QFPt denotes the associated Legendre function of the second kind. The coefficients 
(u,, b,, u,, w,} satisfy simple three-term recurrence relations from which their values 
may easily be calculated (see appendix B). 

The Legendre function Qllz_t(cosh u*) can be evaluated from the expression 

&F-+(cosh a*) 

= O(e-(u+t)a*) as v + 00, (3.16) 

where F is the hypergeometric series, and since i t  can be shown (see Hulme, 1981 b)  
that the coefficients in (3.15) only increase at a rate 

la,+ib,l,lu,+iv,l - Ofexp [4(Ku)n]+), as n +  co (3.17) 

we deduce that the series in (3.15) converge for u* > 0 and that convergence becomes 
more rapid as u* increases. 

Computational experience has shown that the number of terms needed to be taken 
in (3.15) in order to obtain a desired accuracy depends strongly on u* and to a lesser 
extent on Ka;  for fixed Ka the number of terms decreases as u* increases, and if CT* 
is fixed the number of terms needed increases as Ka increases. This is exactly the 
behaviour suggested by the asymptotic results (3.16), (3.17). As an indication of the 
convergence properties of (3.15), experience has shown that for u* 1-0 and 
0 < Ka < 2.0, less than 25 terms in the series are needed to give an absolute error 
< 10-6. 

The expression (3.15) is only valid for the infinite-depth case, but the result is also 
useful when treating finite depths, since we can write 

where 47rr'e-pd(p cosh py - K sinh p y )  (p cosh py' - K sinh py') 
(p - K )  (p sinh pd - K cosh pd) 

. (3.19) Wu) = 

The function h(p)  decays like 

h(p) - O(e-c(Zd-Y/-Y')), 

and so if y+y' is small compared with r and r' the integral (3.19) can be evaluated 
by the quadrature methods previously described. 

4. The numerical solution of the integral equations 
We now consider a numerical technique for solving the integral equations (2.13). 

The aim of the method is.to 'approximate' the integral equations by related systems 
of linear algebraic equations, with constant coefficients. 

To assist the analysis the integral equations (2.13) will be written in the general 
form 

- 2nf(~) + J:'f(d) K ( s ;  8') ds' = D ( S )  (0 G s G s*),  (4.1) 

where a 
K(s ; s ' )  = - R ( r , y ; y ' , y ' )  

and the suffix m has been omitted. (As before s and s' measure arclengths over the 

an 
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body surface.) The kernel K(s;s’)  of this integral equation is singular a t  s = s’, and 
it can be shown that, if the wetted surface S, together with its mirror image in y = 0, 
is of the class G” (i.e. has continuous first and second derivatives), then 

K(s;s’)  = O(lnIs-s’l) as Is-s’I + O .  (4.2) 

We should notice that this geometrical condition implies that  the body should meet 
the free surface a t  a right-angle - if this is not the case then K ( s ;  s’) will have a 
‘stronger’ singularity a t  this point. 

If we assume that the body is of class C“, then (4.2) implies that  the integral 
equation has a weakly singular kernel, and we can follow a method of solution 
described by Baker (1977). First, we rewrite (4.1) as 

where rs* 
A ( $ )  = J K ( s ;  s’)ds’. 

0 

The integrand of this equation is now finite (and in fact vanishes) a t  s = s’, although 
it still has an infinite derivative a t  this point. Let us  now approximate the integral 
by using a quadrature rule: 

N 

j = l  
%* F(s’)ds’ = E y F ( S j ) + E ( N ) ,  (4.4) 

where 

is an N-point dissection of [0, s*], the { &.} are the ‘weights’ associated with the rule 
and E ( N )  denotes the error in its approximation. Using this in (4.3), and putting 
s = si, we have that 

0 = s1 < s2 < sg < ... < SN = s* 

N 

j = 1  

0’ * i) 
{A(s i ) -27r } f ( s i )+ , z  y( f ( s i ) - f ( s i ) }K(s i ; s j )  = D(Si)-E(N) (i = 1,2,3,  ..., N) 

Rearranging the expression gives 

(i = 1,2 ,3 ,  ..., N ) .  (4.5) 

In  practice, little would be known about the quantity E ( N ) ,  but it seems reasonable 
to assume that, as N increases, E ( N )  becomes small compared with the other terms 
in the equation. It is then natural to compare (4.5) with the matrix equation 

Mf= V, (4.6) 

where the matrix M = {mij} is given by 

rnii = WjK(si;si) (i +j), 

vT = (V(S1), . . . ,V( SN)). * 
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We would expect that if the solution to (4.6) is 

fT = (71, ... , Y N )  

then as N + co IT.-f(~i)l + 0 (i  = 1,2,  .. ., N), 

i.e. the fi become increasingly better approximations to the values of the f ( s i ) .  
Approximations to f(s) at other values of s (+ si) can be found by interpolation, 

Systems of equations like (4.6) can now be solved using standard computer 
subroutines. Complications arise when M is singular (i.e. det M vanishes) or, more 
commonly, when M is ‘nearly singular’; this usually corresponds to the situation 
when we are near an irregular value of the integral equation (see below). 

The quadrature rule (4.4) can be adapted to take account of any special geometrical 
features of the surface 5 for example, i t  is sensible to distribute more of the points 
{si} in the regions of greatest curvature. The quadrature scheme used in practice was 
a composite trapezium rule. I n  this the points {s i }  are suitably distributed over [O, s*],  
and the weights (W, )  are then simply 

+(s2-s1) (i = l ) ,  

& ( ~ i + l - ~ i - l )  (i = 2,3,  ..., N - l ) ,  
Z(sN-sN-1) 1 (i = N ) .  

For this rule we would expect that the error term E(N) decays like 1/N2, and this 
gives some measure of the accuracy to which the solution of the integral equation 
can be found using this method. 

Although the numerical method outlined above is crude in terms of its numerical 
analysis, its very simplicity is an advantage when developing the computer program 
needed to implement it. Computer experience shows that it can produce good 
approximations to the solutions of the integral equations, insofar as the accuracies 
that are obtained are sufficient for most engineering applications. Most of the 
computational labour goes into evaluating the elements of the matrix M , and so, as 
a genera1 guide, computer costs increase as N2. For this reason i t  is unwise to use 
unnecessarily large values of N in order to produce unwanted accuracy ; in practice 
values of N between 25 and 40 were usually sufficient to give solutions accurate to 
three significant figures. 

5. The irregular frequencies of floating bodies - a brief discussion 
It has been mentioned that the ring-source/integral-equation method fails to  

produce unique solutions for the source densities fm whenever the wavenumber K 
is an eigenvalue of the corresponding interior Dirichlet problem - figure 2,  where 
4 = q5m(r, y) cos me, m = 0, 1 ,  . . . (see e.g. John 1950). These eigenvalues form the set 
of ‘irregular values’ associated with the integral equations (2.13), and we note that 
they are independent of the fluid depth. 

The importance of these irregular values is that  we expect the numerical scheme 
used to solve the integral equations to  become ‘ill-conditioned ’ within a narrow range 
of wavenumbers surrounding each irregular wavenumber. This ill-conditioning was 
encountered numerically when calculating force coefficients for floating bodies of 
revolution. The matrix M, used in (4.6), depends only on the number N of surface 
points used and on Ka, the non-dimensional wavenumber, where a is a typical length 
dimension of the body. The ill-conditioning arises in the neighbourhood of each 
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FIGURE 2. The interior Dirichlet problem. 

irregular value of Ka, where the matrix M becomes ‘nearly’ singular; more precisely, 
near each irregular value of Ka the quotient 

det { M (Ka ; N ) }  
Qm(Ka; N )  = 1 det{M(O;N)} 

takes values very close to zero. 
Figures 3 and 4 show graphs of Qm, over 0 < Ka < 8.0, for a hemisphere of radius 

a in heave (rn = 0) and surge (m = 1)  respectively. We notice that sharp minima exist 
over the given range and we expect that each minimum occurs very near to an 
irregular value of the integral equations; these graphs are quite typical of those 
obtained for other floating bodies of revolution. Let us denote the nth eigenvalue of 
the interior Dirichlet problem for a hemisphere (in the modes m = 0,1, ...) by aE. 
The author’s calculations suggest that  

a: x 2.56, 

a: x 3.92, 

a: = 5.58, 

a; x 7.06. 

By a ‘ minimax ’ argument of the type used by Garabedian (1964) and more recently 
by Sayer (1977) we can obtain lower bounds on the up of the form 

j P < a E  for m a 0  and n Z  1 ,  

where the jr are the eigenvalues of the interior Dirichlet problem for a vertical 
cylinder of radius a. It is a trivial matter to  show that  the j E  are the zeros of Bessel 
functions, namely Jm(i : )=O for m a 0  and n 2  1 ,  

and for comparison we note that 

j: w 2.40, 

j i  x 3-83, 

ji w 5.52, 

j i  x 7.02. 

Moreover, on physical grounds, we would expect that  as n increases the jp actually 
become increasingly good approximations to the eigenvalues a? for any floating body 
of revolution that meets the free surface normally. (In fact, by closely following a 
method of Ursell (1974) i t  can be shown that as n - co 
where the constant Am is proportional to the curvature of the surface Sa t  its points 
of intersection with the free surface.) 
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These irregular values have no physical significance and arise only from the 
representation of the potential as a surface source distribution. If additional 
singularities are placed inside the body we expect the irregular values to be modified 
or possibly removed altogether. This is demonstrated in a paper by Ursell(l953) who 
used this same modification to derive the short-wave asymptotics of a half-immersed 
circle: i t  was found that all the higher irregular values were incidentally removed. 
More recently, Ursell (1981) has shown that similar methods can also be employed 
to remove the lower irregular values. 

I n  practice, the problem of irregular values is not too difficult to  resolve since, for 
bodies with a vertical axis of symmetry, we have a good idea where the irregular 
values will occur. (This is certainly not the case for an arbitrary 3-dimensional body, 
where even the approximate location of the irregular values is not known a priori.) 
If we solve the equation for a value of K that happens to be very close to an irregular 
value, i t  becomes obvious that the numerical results are not to  be trusted, typically 
because they do not smoothly join up with bhe results obtained a t  values of K slightly 
away from the irregular value. For such a value of K we can then either use Ursell’s 
method to remove the irregular values or be less demanding and obtain numerical 
results merely by interpolation, using more reliable results obtained a t  neighbouring 
values of K. This last technique is the one adopted by the author in the preparation 
of his numerical results. 

6. Numerical results 
Let us consider again the radiation problem as defined in $2,  in which the body 

moves in heave (i.e. performs vertical oscillations), with a velocity v0 cos wt j. The 
heave force Fhj acting on the body is conventionally written as 

Fh = - Ah w sin wt + B h  cos wt} . (6.1) 

The term Ah measures that component of the force that is in phase with the 
acceleration of the body, and is known as the ‘added’ (or ‘virtual’) mass coefficient 
of the system. The term Bh measures the component of the force in phase with the 
velocity of the body, and is known as the ‘ damping ’ coefficient. Similarly, added-mass 
and damping coefficients A,, B, can be defined for the corresponding surge (i.e. 
horizontal) motion of the body. 

It is usual to present numerical results in terms of dimensionless parameters, and 
this convention will be followed here : henceforth non-dimensional force coefficients 
will be denoted by an asterisk. Let vbody be the volume of fluid displaced by the body 
and p be the (uniform) fluid density. Then for the radiation problem, non-dimensional 
added-mass and damping coefficients A;, l?: can be defined by 

Ah* = An/p Tibody, ( 6 . 2 ~ )  

Bh* = Bh/wpvhody, (6 .2b )  
and similarly for A,* and B,*. 

A computer program has been written which numerically implements the ring- 
source/integral-equation method. I n  the notation of figure 1, the program needs to 
be given the shape of the wetted part of the body surface S, in the form 

r = F(y)  (r2 = x 2 + z 2 ) ,  

and it  then proceeds to calculate force coefficients in either the radiation or diffraction 
problems, for specific choices of K ( =  w 2 / g ) .  Results for four types of body will be 
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FIGURE 5. (a )  hemispheroidal body; (6 )  bullet-shaped body; 
(c) cone-shaped body; (d )  bulb-shaped body. 

presented here, and these are depicted in figure 5 .  The first body (a) is hemispheroidal, 
with its axis of symmetry vertical. The other three bodies ( b ) ,  ( c )  and ( d )  will be 
referred to (respectively) as the ‘bullet’, the ‘cone’ and the ‘bulb’, for obvious 
reasons. 

The surface of the hemispheroid is given by 

r2 y2 - a 2 + g = 1  ( O G y G b ) .  

Figures 6-9 show the variation of the added-mass and damping coefficients with the 
non-dimensional wavenumber Ka (for aspect ratios bla = l ,$,  2), for fluid of infinite 
depth. The results seem to be in good agreement with those given previously by Kim 
(1965) for the aspect ratios bla = 1,2, care being taken to note that his definitions 
of A:, B,*, A,*, B,* differ by a factor of $(b/a)n from those used here. The special case 
of bla = 1 (i.e. a hemisphere) can be formulated ‘exactly’ in terms of spherical 
harmonics, following Havelock’s classical treatment of the heaving-hemisphere 
problem (Havelock 1955). This has been done in a recent paper (Hulme 1982), which 
extends Havelock’s method to treat both the heave and surge problems and also 
tabulates values for the added-mass and damping coefficients for the hemisphere. As 
a measure of the accuracy obtained here, it was noted that, when a 35 x 35 matrix 
was used, the ring-source/integral-equation method produced results for A:, BC, A,*, 
B,* which agree to 3 or 4 decimal places with the ‘exact ’ values for this problem, over 
the range 0 6 Ka < 3. 
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FIGURE 6. The added-mass coefficients of heaving hemispheroids 
as functions of Ka (infinite depth). 
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FIGURE 7 .  The damping coefficients of heaving hemispheroids 
as functions of Ku (infinite depth). 
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FIGURE 8. The added-mass coefficients of surging hemispheroids 
as functions of Ka (infinite depth). 
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FIGURE 9. The damping coefficients of surging hemispheroids 
as functions of Ka (infinite depth). 
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Both the bullet- and the cone-shaped body have recently been discussed in tthe 
context of wave-energy extraction from the oceans. Some researchers believe that 
it may be more practicable to employ arrays of small, isolated point absorbers rather 
than construct one large, but compact, energy-extraction device. The suitability of 
using a bullet-shaped body as a point absorber of wave energy has been discussed 
by Count & Knott (1980), who investigated the heaving motion of such bodies. 
Figures 10 and 11 show (heave) added-mass and damping coefficients for a ‘bullet ’ 
whose wetted surface is given by 

[ a  (0 d y <pa),  

= 1 {u2- (y-pu)”)” (pu d y d (p+ 1 )  a) .  

The value of p was chosen to be p = 1.055, so that the relative dimensions of the 
‘bullet’ are the same as those used by Count & Knott. Again, the results shown are 
for the infinite-depth case. 

The efficiency of a cone-shaped body as a point absorber has been investigated by 
Budal et ul. (1981). The ‘cone’ is again assumed to move in heave, and figures 12 and 
13 show (heave) added-mass and damping coefficients for a ‘cone’ whose wetted 
surface is given by 

(Actually, a slight ‘rounding’ was employed near y = 0, to ensure that the body 
intersected the free surface at a right-angle.) The value of Y was taken as Y = 0339: 
this is the relevant value for the cone-shaped buoys considered by Budal et ul. Again, 
the results shown are for infinite depth. 

As yet, all the numerical results that  have been presented are for the radiation 
problem. I n  contrast, figure 14 shows results for the diffraction problem for a bulbous 
body. The exact body shape used was 

T = V U - ~  (0 d y d ~ v u ) .  

where 

This surface has continuous first derivatives and meets the free surface at a right-angle. 
For the diffraction problem we can define a dimensionless heave force coefficient FZ 

FZ = (vertical force on body)/pgHA, (6.3) by 

where H is the amplitude of the incident wave, and A is the area of the vertical 
cross-section through the axis of symmetry of the body. Figure 14 shows the variation 
of FZ with the dimensionless wavenumber Ku for the given bulb-shaped body in fluid 
of infinite depth. The behaviour of Fg in the long-wave region is especially interesting, 
as the calculations suggest that  there is a value of Ka (x 0.15) a t  which there is no 
induced vertical force on the body ; this phenomenon has been observed experimentally 
for other bulb-like bodies (see Motora & Kayama 1966). 

All the results that have been presented here are for the infinite depth case. The 
computations were performed on a CDC 7600 computer, and typical ‘run times’ for 
one value of Ku, when using a 30 x 30 discretization matrix, are of the order of 30-35 s. 
I n  principle, i t  is no more difficult to implement the numerical solution of problems 
involving finite, uniform depths but the computer program would be much more 
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FIGURE 10. The added-mass coefficient of a heaving ‘bullet’ 
as a function of Ka (infinite depth). 
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FIGURE 1 1 .  The damping coefficient of a heaving ‘bullet’ as a function of Ka (infinite depth). 
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FIGURE 12. The added-mass coefficient of a heaving ‘cone’ as a function of Ka (infinite depth). 
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FIGURE 13. The damping coefficient of a heaving ‘cone’ as a function of Ka (infinite depth). 
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FIGURE 14. The heave force exerted on a bulb-shaped body as a function of Ku (infinite depth). 

‘expensive’ to  run than its infinite-depth counterpart. This is entirely due to the 
increased arithmetical complexity of the terms appearing in the kernels of the integral 
equations. 

As a check on the reliability of the numerical results for a certain body geometry 
it is advisable to compare the results obtained for the force coefficients in the radiation 
problem with those obtained in the corresponding diffraction problem. If all is well, 
these should be related by the well-known Haskind relations (see Newman 1962) and 
the closeness of the agreement will give some measure of the overall accuracy of the 
calculation. 

The work presented here forms part of a Ph.D. thesis submitted to the University 
of Manchester. The author wishes to express his gratitude to his supervisor, Professor 
F. Ursell, F.R.S., for his continuing advice and encouragement. The work was 
supported by a C.A.S.E. award from the Science Research Council in conjunction with 
the National Maritime Institute. 

Appendix A 
The Legendre functions Pi(cosh B )  can be evaluated for m = 0 , l  by using their 

known relation to the complete elliptic integrals K and E ,  defined by 

~ ( s )  = (1 -x2sin28)-?d8, 

(i-s2sin28)+id8. 

r 
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Erdklyi et al. (1953) give the results 

(A 1)  
2 

P-&cosha) = -sech+uK(tanh+a), 
7r 

1 1 PLt(coshu) = -ei‘cosechaE((l -e-“);)-  -cothasech$aK(tanh&a). ( A  2 )  
77 7r 

Abramowitz & Stegun (1970) quote polynomial approximations to K ( x )  and E ( x )  
which are accurate to 2 x over 0 < x < 1 ,  care being takeri to note the definitions 
of K(s )  and E(s)  used above. Thus (A 1 )  and (A 2 )  provide an accurate and efficient 
means of evaluating the Legendre functions Pi(cosh a), m = 0,1, for all values of a 
in the range 0 < u < 00. 

Appendix B 
The coefficients {a,, b,, u,, w,} appearing in the series expansion (3.15) are most 

easily evaluated from the three-term recurrence relations which are known to connect 
them (see Hulme 1981 a ) .  The ‘initial ’ coefficients a,, a,, b,, b, are given explicitly by 

qm+l m! 4 

4(Ka) b, = - ~ 

a, = ~ 

2m+3a1’ 
a, = (-  1 ) m  2 d 2 -  

mz (2m+1) ! ’  

bl = 0,  2m+3a1’ 

and the ‘subsequent’ values of {an, b,}, are recursively generated by using the 
formulae 

2(Ka)  b ,  + 2na, - (n-m-+) 
n+m+B an+l = 

(n 2 2). 
- 2(Ka)  a,  + 2nb, - (n-m-4) bn-l 

n+m++ 

It is clear that the coefficients a N f l ,  bN+, depend only on the values of the ‘earlier’ 
coefficients {a%, b,}, N ,  and so it is particularly easy to design an algorithm for 
generating these coefficients on a modern electronic computer. 

bn+l= 

In a similar way, the ‘initial ’ coefficients uo, u, are specified by 

dP 
a, m‘ 

uo = (-  l ) m d 2  qm+l - (Ka)  f J&(p)  ,u-Ka, 
(2m)  ! 0 

and by substituting these values into the equations 

2(Ka)  uo + (m ++) v1 = - 2n(Ka) a,, 

2m+l 
2(Ka)u,-22v1+(m+#)w, = 4n(Ka)- 

2m + 3a1’ 

(KaY 2(Ka) w, + (2m - 1 )  uo + 2u, - (m + 3) u, = 877 ___ 
2m+3a’ 
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we also obtain u2,vl and v2. The ‘subsequent’ coefficients ( u , , ~ , ) , ~ ~  are then 
recursively generated by successive substitution in the formulae 

2(Ka) v n  + 2nu, - ( n  - m -8) Z L , - ~  + p, 
n + m + t  Un+i = 

( n  2 2 ) ,  
- 2(  Ka) u, + 2nv, - ( n -  m -4) w n P 1  - a, 

n + m + i  vn+1 = 

where an = 2n(Ka) {an-l - 2a, +a,+,>, 

Pn = 2n(Ka) {bn-l - 2b, + b,+,}. 

The integral representations for uo, u1 are of little use computationally since the 
integrands only decay at a rate O( l / p 2 )  as ,u -P 00. A better method of evaluation 
comes from considering uo,ul to be functions of Ka and then looking for series 
expansions of the integrals in powers of Ka. For example, we can rewrite the integral 
in (B 1 )  in the form 

and f denotes that the principal value of the integral is to be taken. The integral 
appearing in (B 3) can be treated by taking its Mellin transform with respect to 5, 
re-arranging the order of the integrations, and then using the Mellin inversion 
theorem to express the original integral as a power series in 5. The analysis is quite 
straightforward, but rather laborious, and so we will just state the final result: 

The integral in (B 2 )  can also be expressed in terms of an infinite series by using the 
relation 

where 1 if m = 0 ,  

0 otherwise. 
am0 = 
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